Sang-Kon Kim: Publications All

View All

  1. “Contact Hole Shrinkage: Simulation Study of Resist Flow Process and Its Application to Block Copolymers,“ Sang-Kon Kim, micromachies, 15, 1151 (2024), Impact Factor = 3.0. doi.org/10.3390/mi15091151

  2. “Theoretical study of extreme ultraviolet pellicles with nanometer thicknesses,“ Sang-Kon Kim, solid-state electronics, 216, 108924 (2024), Impact Factor = 1.7. doi.org/10.1016/j.sse.2024.108924

  3. “Transverse Deflection for Extreme Ultraviolet Pellicles,“ Sang-Kon Kim, materials, 16, 3471 (2023), Impact Factor = 3.748. doi.org/10.3390/ma16093471

  4. “Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study,“ Sang-Kon Kim, micromachies , 12, 12, 1493 (2021), Impact Factor = 3.523. doi.org/10.3390/mi12121493

  5. “Computational Sub-10 nm Plasmonic Nanogap Patterns by Block Copolymer Self-Assembly ,“ Sang-Kon Kim, Journal of Nanoelectronics and Optoelectronics (JNO), 16, 7, 1063-1066 (2021), Impact Factor = 1.069. doi.org/10.1166/jno.2021.3019

  6. “Understanding the Exposure Process in the Extreme Ultraviolet Lithography,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 21, 8, 4466-4469 (2021), Impact Factor = 1.354. doi.org/10.1166/jnn.2021.19412

  7. “Line-Edge Roughness on Fin-Field-Effect-Transistor Performance for 7-nm and 5-nm Patterns,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 20, 11, 6912-6915 (2020), Impact Factor = 1.354. doi.org/10.1166/jnn.2020.18814

  8. “Computational Study of Extreme Ultraviolet Vote-Taking Lithography for Defect Repair,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 20, 8, 4994-4997 (2020), Impact Factor = 1.354. doi.org/10.1166/jnn.2020.17822

  9. “Line-Edge Roughness Stochastics for 5-nm Pattern Formation in the Extreme Ultraviolet Lithography,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 19, 8, 4657-4660 (2019), Impact Factor = 1.354. doi.org/10.1166/jnn.2019.16698

  10. “Impact of plasmonic parameters on 7-nm patterning in plasmonic computational lithography, “ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 18, 10, 7124-7127 (2018), Impact Factor = 1.483. doi.org/10.1166/jnn.2018.15483

  11. “A Molecular View of Block Copolymer Directed Assembly with Solvent Vapors Simulation, “ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 17, 11, 8369-8371 (2017), Impact Factor = 1.483. doi.org/10.1166/jnn.2017.15145

  12. “Effects of Line-Edge Roughness on Extreme Ultraviolet Lithography CDs and Fin-Field-Effect-Transistor Performance for Below 10-nm Patterns,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 17, 11, 8338-8343 (2017), Impact Factor = 1.483. doi.org/10.1166/jnn.2017.15141

  13. “Impact of Process Parameters on a Combining Process of Block-Copolymer Self-Assembly with Electrohydrodynamic Jet Printing,“ Sang-Kon Kim, Sci. Adv. Mater. 9, 1, 42-47 (January 2017). Impact Factor = 1.812. doi.org/10.1166/sam.2017.2445

  14. “Computational Study of Electrohydrodynamic Jet Printing with Block-Copolymer Inks,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 17 5432-5435 (2017), Impact Factor = 1.483. doi.org/10.1166/jnn.2017.14151

  15. “Effect of Computational Lithography Parameters on the Organic Light-Emitting Diodes,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 16, 8, 8496-8499 (2016), Impact Factor = 1.556. doi.org/10.1166/jnn.2016.12521

  16. “Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 16, 5, 5410-5419 (2016), Impact Factor = 1.556. doi.org/10.1166/jnn.2016.12254

  17. “Prediction of electric field effects on defect-free self-assembled nano-patterning of block copolymer,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 16, 3, 2706-2709 (2016), Impact Factor = 1.556. doi.org/10.1166/jnn.2016.11082

  18. “Impact of process parameters on pattern formation in the maskless plasmonic computational lithography,“ Sang-Kon Kim, Current Applied Physics (CAP), 15, 6, 698-702 June (2015), Impact Factor = 2.026. doi.org/10.1016/j.cap.2015.03.016

  19. “Contact hole shrinking of directed self-assembly and its application based on simulation approach,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 15, 10, 8183-8186 (2015), Impact Factor = 1.352. doi.org/10.1166/jnn.2015.11288

  20. “Computational Nanopatterning in the Plasmonic Metamaterials for Diffraction Limit,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 15, 2, 1368-1374 (2015), Impact Factor = 1.352. doi.org/10.1166/jnn.2015.9282

  21. “Modeling and Analysis for Contact Hole Shrink by Directed Self-Assembly,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS), 65, 10, 1701-1705, November (2014), Impact Factor = 0.476. doi.org/10.3938/jkps.65.1701

  22. “Impact of Process Parameters on Pattern Formation of the Self-Aligned Multiple Patterning Process,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 14, 12, 9454-9458 Dec. (2014), Impact Factor = 1.352. doi.org/10.1166/jnn.2014.10156

  23. “Modeling and Simulation of Line Edge Roughness for EUV Resists,“ Sang-Kon Kim, Journal of Semiconductor Technology and Science (JSTS), 14, 1, 61-69, Feb. (2014), SCIE Impact Factor = 0.58. doi.org/10.5573/JSTS.2014.14.1.061

  24. “Modeling and Simulation of Patterning Diblock Copolymers Through Nanoimprint Lithography,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 14, 8, 6065-6068 Aug. (2014), Impact Factor = 1.352. doi.org/10.1166/jnn.2014.8827

  25. “Stochastic Simulation Studies of Line-Edge Roughness in Block Copolymer Lithography,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 14, 8, 6143-6145 Aug. (2014), Impact Factor = 1.352. doi.org/10.1166/jnn.2014.8451

  26. “Aerial Image Formation of Quantum Lithography for Diffraction Limit,“ Sang-Kon Kim, Current Applied Physics (CAP), 12, 8, 6, 1566-1574, Nov. (2012) Impact Factor = 1.90. doi.org/10.1016/j.cap.2012.05.001

  27. “Sensitivity of Process Parameters on Pattern Formation of Litho-Cure-Litho-Etch Process,“ Sang-Kon Kim, Japanese Journal of Applied Physics (JJAP), 51, 06FC02-1~06FC02-5, June (2012), Impact Factor = 1.018. doi.org/10.1143/JJAP.51.06FC02

  28. “Pattern Interactions of Post Exposure Bake in Litho-Cure-Litho-Etch Process,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS), 60, 10, 1776-1780, May (2012). Impact Factor = 0.476. doi.org/10.3938/jkps.60.1776

  29. “Directed Self-Assembly Lithography and Its Application Based on Simulation Approach,“ Sang-Kon Kim, Journal of Nanoscience and Nanotechnology (JNN), 12, 4, 3412-3416, April (2012), Impact Factor = 1.352. doi.org/10.1166/jnn.2012.5607

  30. “Exposed Pattern Interaction of Litho-Cure-Litho-Etch Process in Computational Lithography,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS)), 59, 21, 425-430, August (2011), Impact Factor = 0.476. doi.org/10.3938/jkps.60.1776

  31. “Advanced Lithography Simulation for Various 3-Dimensional Nano/Microstructuring Fabrications in Positive- and Negative-Tone Photoresists,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Nanoscience and Nanotechnology (JNN), 11, 528-532 Jan. (2011), Impact Factor = 1.352. doi.org/10.1166/jnn.2011.3288

  32. “Simulation Study of Sub-10 nm Pattern Formation Using Diblock Polymer Directed Self-assembly,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Korean Physical Society (JKPS), 57, 61, 1942-1945, Dec. (2010), Impact Factor = 1.204. doi.org/10.3938/jkps.57.1942

  33. “Mechanism of Embedded Micro / Nano Channel Formation for a Negative-Tone Photoresist by Moving Mask Lithography,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Korean Physical Society (JKPS), 56, 3, 851-855 (2010). Impact Factor = 1.204. doi.org/10.3938/jkps.56.851

  34. “A study of virtual lithography process for polymer directed self-assembly ,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Microelectronic Engineering, 87, 883-886 May-Oct. (2010), Impact Factor = 1.583. doi.org/10.1016/j.mee.2009.12.029

  35. “Impact of Polarization Inside a Resist for ArF Immersion Lithography ,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Korean Physical Society (JKPS), 54, No. 4, 1685-1691, April (2009). Impact Factor = 1.204. https://www.jkps.or.kr/journal/view.html?uid=10536&vmd=Full

  36. “Impact of the Parameters for a Chemically-amplified Resist on the Line-edge-roughness by Using a Molecular-scale Lithography Simulation ,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Korean Physical Society (JKPS), 55, No. 2, 675-680, August (2009). Impact Factor = 1.204. https://www.jkps.or.kr/journal/view.html?uid=10914&vmd=Full

  37. “Modeling of the Cross-linking and the Diffusion Processes in a Negative Chemically Amplified Resist,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Journal of Korean Physical Society (JKPS), 55, No. 2, 661-665, August (2009). Impact Factor = 1.204. https://www.jkps.or.kr/journal/view.html?uid=10888&vmd=Full

  38. “A Mask Generation Approach to Double Patterning Technology with Inverse Lithography,“ Sang-Kon Kim, Hye-Keun Oh, Young-Dae Jung, and Ilsin An, Japanese Journal of Applied Physics (JJAP), 47, No. 11, November (2008). Impact Factor = 1.247. doi.org/10.1143/JJAP.47.8333

  39. “Solving the Navier-Stokes Equation for Thermal Reflow,“ Sang-Kon Kim and Hye-Keun Oh, Journal of Korean Physical Society (JKPS), 53, No. 9, 2682-2687, November (2008). Impact Factor = 1.204. https://www.jkps.or.kr/journal/view.html?uid=10241&vmd=Full

  40. “Influence of Mask Feature on the Diffracted Light in Proximity and Contact Lithography,“ Sang-Kon Kim and Hye-Keun Oh, Journal of Korean Physical Society (JKPS), 53, No. 9, 3578-3583, December (2008). Impact Factor = 1.204. https://www.jkps.or.kr/journal/view.html?uid=10165&vmd=Full

  41. “Thermal Treatment for Optical Proximity Correction,“ Sang-Kon Kim, Microelectronic Engineering, 84, 766-769, May-August. (2007), Impact Factor = 1.398. doi.org/10.1016/j.mee.2007.01.030

  42. “Polarized Effects in Optical Lithography with High NA Technology,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS), 50, No. 6, 1952-1958, June (2007), Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=8637&vmd=Full

  43. “Process Extension Techniques for Optical Lithography: Thermal Treatment, Polarization and Double Patterning,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS), 51, No. 4, 1413-1418, October (2007). Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=8915&vmd=Full

  44. “Orthogonal Functional Method for Optical Proximity Correction of Thermal Processes in Optical Lithography,“ Sang-Kon Kim, Japanese Journal of Applied Physics (JJAP), 46, No. 12, 7662-7665, December (2007), Impact Factor = 1.222. doi.org/10.1143/JJAP.46.7662

  45. “Thermal Effect Study for a Chemically Amplified Resist,“ Sang-Kon Kim, Journal of Korean Physical Society (JKPS), 49, No. 3, 1211-1216, Sep. (2006). Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=7953&vmd=Full

  46. “Simulator for the Design Considered Critical Dimension Bias in Resist Reflow Process,“ Sang-Kon Kim and Tae Seon Kim, Journal of Korean Physical Society (JKPS), 48, No. 6, 1661-1665, June (2006). Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=7627&vmd=Full

  47. “Model-Based Optical Proximity Correction for Resist Reflow Process,“ Sang-Kon Kim, Japanese Journal of Applied Physics (JJAP), 45, No. 6B, 5440-5444, June (2006). Impact Factor = 1.222. doi.org/10.1143/JJAP.45.5440

  48. “Resist Reflow Process Simulation Study for Contact Hole Pattern,“ Sang-Kon Kim, Journal of Vacuum Science and Technology (JVST) B, 24, 200-204, Jan./Feb. (2006), Impact Factor = 1.597. doi.org/10.1116/1.2155530

  49. “Optical Lithography Simulation for the Whole Resist Process,“ Sang-Kon Kim, Ji-Eun Lee, Seung-Wook Park, Hye-Keun Oh, Current Applied Physics, 6, Issue 1, 48~53, Jan. (2006). (SCIE) Impact Factor = 1.184. doi.org/10.1016/j.cap.2004.12.003

  50. “Simulator for Resist-Reflow Process by Boundary Movement,“ Sang-Kon Kim and Hye-Keun Oh, Journal of Korean Physical Society (JKPS), 47, 93, S377-S380, Nov. (2005). Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=7363&vmd=Full

  51. “Physical Characteristic Effects of Contact Hole Reflow,“ Sang-Kon Kim, Japanese Journal of Applied Physics (JJAP), 44, No.10, 7384-7389, Oct. (2005). Impact Factor = 1.222. doi.org/10.1143/JJAP.44.7384

  52. “Bulk Effects of Thermal Flow Resists,“ Sang-Kon Kim, Hye-Keun Oh, Ilsin An, Sung-Muk Lee, Cheol-Kyu Bok, and Seung-Chan Moon Journal of Korean Physical Society (JKPS), 46, 6,1439~1444, June (2005), Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=7016&vmd=Full

  53. “A Study of Process Parameter Control for Nanopattern,“ Sang-Kon Kim and Hye-Keun Oh, Journal of Korean Physical Society (JKPS), 45, 9, 736 ~ 739, Dec.(2004). Impact Factor = 1.328. https://www.jkps.or.kr/journal/view.html?uid=6556&vmd=Full

  54. “Exposure Simulation Model for Chemically Amplified Resists,“ Sang-Kon Kim, OPTICAL REVIEW, 10, No. 4, 335-338 (July/Aug. 2003). Impact Factor = 0.576. doi.org/10.1007/s10043-003-0335-x

  55. “Pattern Collapse for Nanoline Formation,“ Sang-Kon Kim, Journal of the Korean Physical Society (JKPS), 42, Feb. S371-S375 (2003). Impact Factor = 1.328. http://dspace.kci.go.kr/handle/kci/573104

  56. “Resist Distribution Effect of Spin Coating,“ Sang-Kon Kim, Ji-Yong Yoo and Hye-Keun Oh, Journal of Vacuum Science and Technology (JVST) B, 20, Issue 6, 2206~2209 Nov. (2002). Impact Factor = 1.597. doi.org/10.1116/1.1513582

  57. “Bulk Image Formation of Scalar Modeling in Photoresist,“ Sang-Kon Kim and Hye-Keun Oh, Journal of the Korean Physical Society (JKPS), 41, No. 4, 456-460 (2002). Impact Factor = 1.328, https://www.jkps.or.kr/journal/view.html?uid=5091&vmd=Full

  58. “Sensitivity of Simulation Parameter for Critical Dimension,“ Sang-Kon Kim and Hye-Keun Oh, Japanese Journal of Applied Physics (JJAP), 41, No. 6B, 4222-4227 (2002). Impact Factor = 1.222, doi.org/10.1143/JJAP.41.4222